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A New Measurement of the W Boson Mass at D�

The D� Collaboration �

Fermi National Accelerator Laboratory, Batavia, Illinois 60510

(July 15, 1999)

Abstract

We present a new measurement of the W mass using the W ! e� data

from the D� forward detectors at the Fermilab Tevatron p�p Collider. This is

the �rst measurement of the W mass with electron candidates in the range

1:5 <j � j< 2:5. We present measurements of the W mass using the transverse

mass, the electron transverse momentum and the neutrino transverse momen-

tum, and the combined result using all three techniques. The combination of

the forward detector measurement with the previous measurements using the

central detector gives a new precise measurement of the W mass from D�.

�Submitted to the International Europhysics Conference on High Energy Physics, EPS-HEP99,

15 { 21 July, 1999, Tampere, Finland.
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In the standard model of the electroweak interactions (SM) [1], the mass of the W boson
is predicted to be

MW =

�
��(M2

Z)p
2GF

� 1

2 1

sin �w
p
1��rW

: (1)

In the \on-shell" scheme [2] cos �w =MW=MZ, where MZ is the Z boson mass. A measure-
ment of MW , together with MZ , the Fermi constant (GF ), and the electromagnetic coupling
constant (�), determines the electroweak radiative corrections �rW experimentally. Purely
electromagnetic corrections are absorbed into the value of � by evaluating it at Q2 =M2

Z [3].
The dominant contributions to �rW arise from loop diagrams that involve the top quark
and the Higgs boson. If additional particles which couple to the W boson exist, they give
rise to additional contributions to �rW . Therefore, a measurement of MW is one of the
most stringent experimental tests of SM predictions. Deviations from the predictions may
indicate the existence of new physics. Within the SM, measurements of MW and the mass
of the top quark constrain the mass of the Higgs boson.

This paper reports a new measurement of the W boson mass using electrons detected in
forward calorimeters. We used data recorded by the D� detector [4] during the 1994{1995
run of the Fermilab Tevatron pp collider. This forward electron measurement complements
our previous measurement with central electrons [5] because the more complete rapidity cov-
erage gives useful constraints on model parameters that permit reduction of the systematic
error, in addition to increasing the statistical precision. Combining this measurement with
our previously published measurements with central electrons using data taken in 1992{1993
and 1994{1995, determines the W boson mass to a precision of 93 MeV.

At the Tevatron, W bosons are produced mainly through qq annihilation. We detect
them by their decays into electron-neutrino pairs, characterized by an isolated electron [6]
with large transverse momentum (pT ) and signi�cant transverse momentum imbalance (/pT ).
The /pT is due to the neutrino which escapes detection. Many other particles of lower
momenta, which recoil against the W boson, are produced in the breakup of the proton and
antiproton. We refer to them collectively as the underlying event.

At the trigger level we require /pT > 15 GeV and an energy cluster in the electromag-
netic (EM) calorimeter with pT > 20 GeV. The cluster must be isolated and have a shape
consistent with that of an electron shower.

During event reconstruction, electrons are identi�ed as energy clusters in the EM
calorimeter which satisfy isolation and shower shape cuts and have a drift chamber track
pointing towards the cluster centroid. We determine forward electron energies by adding the
energy depositions in the �rst � 40 radiation lengths of the calorimeter in a cone of radius
20 cm, centered on the highest energy deposit in the cluster. Fiducial cuts reject electron
candidates near calorimeter module edges and ensure a uniform calorimeter response for the
selected electrons. The electron momentum (~p(e)) is determined by combining its energy
with its direction which is obtained from the shower centroid position and the drift chamber
track. The trajectories of the electron and the proton beam de�ne the position of the event
vertex.

We measure the sum of the transverse momenta of all the particles recoiling against the
W boson, ~uT =

P
iEi sin �iûi, where Ei is the energy deposition in the ith calorimeter cell
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and �i is the angle de�ned by the cell center, the event vertex, and the proton beam. The
unit vector ûi points perpendicularly from the beam to the cell center. The calculation of ~uT
excludes the cells occupied by the electron. The sum of the momentum components along
the beam is not well measured because of particles escaping through the beam pipe. From
momentum conservation we infer the transverse neutrino momentum, ~pT (�) = �~pT (e)�~uT ,
and the transverse momentum of the W boson, ~pT (W ) = �~uT .

We select aW boson sample of 11,090 events by requiring pT (�) > 30 GeV, uT < 15 GeV,
and an electron candidate with 1:5 < j�j < 2:5 and pT (e) > 30 GeV.

Since we do not measure the longitudinal momentum components of the neutrinos
from W boson decays, we cannot reconstruct the e� invariant mass. Instead, we ex-
tract the W boson mass from the spectra of the electron pT and the transverse mass,
mT =

p
2pT (e)pT (�)(1� cos��), where �� is the azimuthal separation between the two

leptons. We perform a maximum likelihood �t to the data using probability density func-
tions from a Monte Carlo program. Since neither mT nor pT (e) are Lorentz invariants, we
have to model the production dynamics of W bosons to correctly predict the spectra. The
mT spectrum is insensitive to transverse boosts at leading order in pT (W )=MW and is there-
fore less sensitive to the W boson production model than the pT (e) spectrum. On the other
hand, the mT spectrum depends strongly on the detector response to the underlying event
and is therefore more sensitive to detector e�ects than the pT (e) spectrum. The shape of
the neutrino pT (�) spectrum is sensitive to both the W boson production dynamics and the
recoil momentum measurement. By performing the measurement using all three spectra we
provide a powerful cross check with complementary systematics.

Z bosons decaying to electrons provide an important control sample. We use them to
calibrate the detector response to the underlying event and to the electrons, and to constrain
the model for intermediate vector boson production used in the Monte Carlo simulations.

A Z ! ee event is characterized by two isolated high-pT electrons. We trigger on events
with at least two EM clusters with pT > 20 GeV. We accept Z ! ee decays with at least
one forward electron in the pseudorapidity range 1:5 < j�j < 2:5, where � = � ln

�
tan �

2

�
,

and the other electron to be either forward or central with pseudorapidity j�j < 1:0. The
central electron is required to have pT > 25 GeV but is allowed not to have a matching
drift chamber track. The forward electron candidate is required to have pT > 30 GeV and
a matching drift chamber track. This selection accepts 1,687 events.

For this measurement we used a fast Monte Carlo program developed for our central
electron analysis [5], with some modi�cations in the simulation of forward electron events.
The program generates W and Z bosons with the rapidity and pT spectra given by a calcu-
lation using soft gluon resummation [7] and the MRSA [15] parton distribution functions.
The line shape is a relativistic Breit-Wigner, skewed by the mass dependence of the par-
ton luminosity. The measured intrinsic widths [9,10] are used. The angular distribution of
the decay electrons includes a pT (W )-dependent O(�s) correction [11]. The program also
generates W ! e� [12], Z ! ee [12], and W ! �� ! e��� decays.

The program smears the generated ~p(e) and ~uT vectors using a parameterized detec-
tor response model and applies ine�ciencies introduced by the trigger and event selection
requirements. The model parameters are adjusted to match the data and are discussed
below.

The electron energy resolution is described by sampling, noise, and constant terms. In
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the Monte Carlo simulation of forward electrons we use a sampling term of 15:7%=
p
p=GeV,

derived from beam tests. The noise term is determined by pedestal distributions derived
from the W data sample. We constrain the constant term to cEM = 1:0+0:6

�1:0% by requiring
that the width of the dielectron invariant mass spectrum predicted by the Monte Carlo
simulation is consistent with the Z data (Fig. 1).
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FIG. 1. The dielectron invariant mass distribution of the Z data (�). The solid line shows the

�tted signal plus background shape and the small shaded area the background. The arrows indicate

the �t window.

Beam tests show that the electron energy response of the calorimeter can be parameter-
ized by a scale factor �EM and an o�set �EM. We determine these in situ using Z ! ee decays.
We obtain for forward electrons �EM = �0:1 � 0:7 GeV and �EM = 0:95179 � 0:000187 by
�tting the observed mass spectra while constraining the resonance masses to the measured
value of the Z boson mass [10,13]. The uncertainty in �EM is dominated by the �nite size
of the Z sample. Figure 1 shows the observed dielectron mass spectrum from the dielectron
sample, and the line shape predicted by the Monte Carlo simulation for the �tted values of
cEM, �EM, and �EM.

We calibrate the response of the detector to the underlying event, relative to the EM
response, using Z boson data sample. In Z ! ee decays, momentum conservation requires
~pT (ee) = �~uT , where ~pT (ee) is the sum of the two electron pT vectors. To minimize sensi-
tivity to the electron energy resolution, we project ~uT and ~pT (ee) on the inner bisector of
the two electron directions, called the �-axis (Fig. 2). We call the projections u� and p�(ee).
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FIG. 2. The de�nition of the �-axis (left). The plot of u�=Rrec + p�(ee) (right) for the data (�)

and simulation (|).

Detector simulations based on the geant program [14] predict a detector response to
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the recoil particle momentum of the form Rrec = �rec + �rec ln(pT=GeV). We constrain
�rec and �rec by comparing the mean value of u� + p�(ee) with Monte Carlo predictions for
di�erent values of the parameters. We use �rec = 0:693 � 0:060 and �rec = 0:040 � 0:021
with a correlation coe�cient of �0:98 obtained in central electron analysis [5]. We check
that Z events with both electrons in the end calorimeter give a recoil response measurement
statistically consistent with the above (Figure 2).

The recoil momentum resolution has two components. We smear the magnitude of
the recoil momentum with a resolution of srec=

p
pT=GeV. We describe the detector noise

and pile-up, which are independent of the boson pT and azimuthally symmetric, by adding
the /pT from a random pp interaction, scaled by a factor �mb, to the smeared boson pT .
To model the luminosity dependence of this resolution component correctly, the sample of
pp interactions was chosen to have the same luminosity spectrum as the W sample. We
constrain the parameters by comparing the observed rms of u�=Rrec + p�(ee) with Monte
Carlo predictions. We use srec = 0:49 � 0:14 and �mb = 1:032 � 0:028 with a correlation
coe�cient of �0:60 measured in central electron analysis [5]. Since we exlude the cells
occupied by the electrons, the average transverse energy ow, ST =

P
iEi sin �i, is higher

for theW sample than for the Z sample. This bias is caused by requiring the identi�cation of
two electrons in the Z sample versus one in the W sample. The larger energy ow translates
into a slightly broader recoil momentum resolution in the W sample. �mb is corrected by a
factor 1:03� 0:01 to account for this e�ect in the W boson model. The p� balance width is
in good agreement between data and Monte Carlo for our Z event sample. Hence we use the
same recoil resolution for forward electornW events as for the centralW events [5]. Figure 2
shows a plot of u�=Rrec + p�(ee) when both electrons are in the forward calorimeters.

Backgrounds in the W sample are W ! �� ! e��� decays (1.0%, which is included into
the Monte Carlo simulation ), hadrons misidenti�ed as electrons (3.64%�0.78%, determined
from the data ), and Z ! ee decays (0.26%�0.02%, determined from HERWIG/GEANT
simulations). Their shapes are included in the probability density functions used in the �ts.

FIG. 3. Spectra of (a) mT , (b) pT (e) and (c) pT (�) from the data (�), the �t (|), and the

backgrounds (shaded). The arrows indicate the �t windows.

In principle, if the acceptance for theW ! e� decays were complete, the transverse mass
distribution or the lepton pT distribution would be independent of theW rapidity. However,
cuts on the electron angle in the laboratory frame cause the observed distributions of the
transverse momenta to depend on the W rapidity. Hence a constraint on the W rapidity
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distribution is useful in contraining the production model uncertainty on the W mass. We
introduce in the Monte Carlo a scale factor k� for the W boson rapidity as �W ! k��W
and extract it by �tting Monte Carlo electron rapidity distribution simulated with di�erent
value of k� to the data. The scale factor is found to be consistant, within errors, with unity
with uncertainty 1.6%.

The �t to the mT distribution (Fig. 3(a)) yields MW = 80:766 GeV with a statistical
uncertainty of 108 MeV. A �2 test gives �2 = 17 for 25 bins which corresponds to a con�dence
level of 81%. The �t to the pT (e) distribution (Fig. 3(b)) yields MW = 80:587 GeV with
a statistical uncertainty of 125 MeV. The con�dence level of the �2 test is 5%. The �t to
the pT (�) distribution (Fig. 3(c)) yields MW = 80:726 GeV with a statistical uncertainty of
163 MeV and con�dence level 33%.

We estimate systematic uncertainties inMW from the Monte Carlo parameters by varying
them within their uncertainties (Table I). In addition to the parameters described above, the
calibration of the electron polar angle measurement contributes a signi�cant uncertainty. We
use muons from pp collisions and cosmic rays to calibrate the drift chamber measurements
and Z ! ee decays to align the calorimeter with the drift chambers. Smaller uncertainties
are due to the removal of the cells occupied by the electron from the computation of ~uT , the
uniformity of the calorimeter response, and the modeling of trigger and selection biases.

TABLE I. Uncertainties in the W boson mass measurement in MeV.

Source Forward Forward + Central

W boson statistics 107 61

Z boson statistics 181 59

Calorimeter linearity 52 25

Calorimeter uniformity { 8

Electron resolution 42 19

Electron angle calibration 20 10

Recoil response 17 25

Recoil resolution 42 25

Electron removal 2 12

Selection bias 5 3

Backgrounds 20 9

Parton distribution functions 35 15

Parton luminosity 2 4

pT (W ) spectrum 25 15

W boson width 10 10

radiative decays 1 12

The uncertainty due to the model for W boson production and decay consists of several
components (Table I). We assign an uncertainty that characterizes the range of variations
in MW obtained when employing several recent parton distribution functions: MRST [8],
MRSA [15], MRSR2 [16], CTEQ5M [17], and CTEQ4M [18]. We allow the pT (W ) spec-
trum to vary within constraints derived from the pT (ee) spectrum of the Z data and from
�QCD [13]. The uncertainty due to radiative decays contains an estimate of the e�ect of
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neglecting double photon emission in the Monte Carlo simulation [19].
The �t to the mT spectrum results in a W boson mass of 80:766 � 0:108(stat) �

0:208(syst) GeV, the �t to the pT (e) spectrum results in 80:587 � 0:125(stat) �
0:217(syst) GeV, and the �t to the pT (�) spectrum results in 80:726 � 0:163(stat) �
0:307(syst) GeV. The good agreement of the three �ts shows that our simulation mod-
els the W boson production dynamics and the detector response well. Fits to the data in
bins of luminosity, �(e), �(e), and uT do not show evidence for any systematic biases.

We combine all the six measurements ( �ts to central electron [5] and forward electron
W boson events using three techniques ). We obtain the combined 1994-1995 measurement
MW = 80:487� 0:096 GeV. The �2 is 4.6/5 dof, with a probability of 46%. Combining with
the measurement from the 1992{93 data gives the 1992{95 data measurement of MW =
80:474� 0:093 GeV.
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FIG. 4. Direct W boson and top quark mass measurements by the D� [20] experiment. The

bands show SM predictions for the indicated Higgs masses [21].

Using Eq. 1 we �nd �rW = �0:0317 � 0:0061, which establishes the existence of elec-
troweak corrections to MW at the level of �ve standard deviations. Figure 4 compares the
direct measurements of the W boson and top quark masses to SM predictions.
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